Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0292206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564644

RESUMO

Collection and cooking of wild vegetables have provided seasonal enjoyments for Japanese local people as provisioning and cultural ecosystem services. However, the Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused extensive radiocesium contamination of wild vegetables. Restrictions on commercial shipments of wild vegetables have been in place for the last 10 years. Some species, including buds of Aralia elata, are currently showing radiocesium concentrations both above and below the Japanese reference level for food (100 Bq/kg), implying that there are factors decreasing and increasing the 137Cs concentration. Here, we evaluated easy-to-measure environmental variables (dose rate at the soil surface, organic soil layer thickness, slope steepness, and presence/absence of decontamination practices) and the 137Cs concentrations of 40 A. elata buds at 38 locations in Fukushima Prefecture to provide helpful information on avoiding collecting highly contaminated buds. The 137Cs concentrations in A. elata buds ranged from 1 to 6,280 Bq/kg fresh weight and increased significantly with increases in the dose rate at the soil surface (0.10-6.50 µSv/h). Meanwhile, the 137Cs concentration in A. elata buds were not reduced by decontamination practices. These findings suggest that measuring the latest dose rate at the soil surface at the base of A. elata plants is a helpful way to avoid collecting buds with higher 137Cs concentrations and aid in the management of species in polluted regions.


Assuntos
Aralia , Acidente Nuclear de Fukushima , Isoflavonas , Monitoramento de Radiação , Poluentes Radioativos do Solo , Humanos , Verduras , Radioisótopos de Césio/análise , Ecossistema , Poluentes Radioativos do Solo/análise , Solo , Proteínas de Soja , Japão
2.
Environ Pollut ; 338: 122617, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757931

RESUMO

In this study, the effect of temperature, water quality, and the impact of an intense typhoon event on change in 137Cs concentration in the water of agricultural and forested rivers near the Fukushima Daiichi nuclear power plant (Japan) was evaluated using monthly stationary observations obtained under baseflow conditions 2.8-10.6 years after the nuclear accident in 2011. The dissolved 137Cs concentration fluctuated seasonally with water temperature in all rivers, and the increase in dissolved 137Cs concentration for unit increase in temperature was higher in forested rivers than in agricultural rivers. The relationship between water temperature and the apparent distribution coefficient of 137Cs well followed the van 't Hoff equation in the two agricultural rivers, where the enthalpy of reaction was estimated as -15.6 and -19.6 kJ mol-1. The van 't Hoff equation was not well followed for a forested river, where the suspended solids mainly comprised organic matter, suggesting that the dominant process determining dissolved 137Cs concentrations in forested rivers is not only water temperature effect on ion exchange, but rather the input of 137Cs and K+ (competing with 137Cs for exchange sites on mineral particles) into the water phase via litter leaching. Suspended solids concentrations in agricultural rivers correlated negatively with 137Cs concentrations in suspended solids, suggesting an increased proportion of coarse particles or the input of soils with low 137Cs concentration from decontaminated agricultural land. At some sites, 137Cs concentrations in dissolved form and in suspended solids were reduced sharply in association with the passage of Typhoon Hagibis in October 2019, suggesting that Typhoon Hagibis caused large-scale surface erosion that removed the source of 137Cs.


Assuntos
Tempestades Ciclônicas , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Poluentes Radioativos da Água/análise , Rios , Temperatura , Qualidade da Água , Estações do Ano , Radioisótopos de Césio/análise , Japão
3.
Sci Rep ; 13(1): 14162, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644128

RESUMO

The aggregated transfer factor (Tag) is commonly used to represent the actual transfer of radiocesium from soil to wild edible plants, but the values have shown substantial variation since the Fukushima nuclear accident. To elucidate the factors causing this variation, we investigated the effects of spatial scale and vertical 137Cs distribution in the soil on the variation of Tag-137Cs values for one of the most severely contaminated wild edible plants, Eleutherococcus sciadophylloides Franch. et Sav. (Koshiabura). The variation in Tag-137Cs values was not reduced by direct measurement of 137Cs deposition in soil samples from the Koshiabura habitat, as a substitute for using spatially averaged airborne survey data at the administrative district scale. The 137Cs activity concentration in Koshiabura buds showed a significant positive correlation with the 137Cs inventories only in the organic horizon of soil from the Koshiabura habitat. The ratio of 137Cs inventories in the organic horizon to the total 137Cs deposition in soil exhibited substantial variation, especially in broad-leaved deciduous forests that Koshiabura primarily inhabits. This variation may be the cause of the wide range of Tag-137Cs values observed in Koshiabura buds when calculated from the total 137Cs deposition in soil.


Assuntos
Araliaceae , Eleutherococcus , Fator de Transferência , Plantas Comestíveis , Solo
4.
New Phytol ; 235(3): 993-1004, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590479

RESUMO

In forest ecosystems, understanding the relationship between the vertical distribution of fine roots and residual soil nitrogen is essential for clarifying the diversity-productivity-water purification relationship. Vertical distributions of fine-root biomass (FRB) and concentrations of nitrate-nitrogen (NO3 -N) in soil water were investigated in a conifer plantation with three thinning intensities (Control, Weak and Intensive), in which hardwood abundance and diversity were low, moderate and high, respectively. Intensive thinning led to the lowest NO3 -N concentration in soil water at all depths (0-100 cm) and highest FRB at shallow depths (0-50 cm). The NO3 -N concentration at a given depth was negatively correlated with total FRB from the surface to the depth at which NO3 -N concentration was measured, especially at shallow depths, indicating that more abundant fine roots led to lower levels of downward NO3 -N leaching. FRB contributed positively to nitrogen content of hardwood leaves. These findings demonstrate that a hardwood mixture in conifer plantations resulted in sufficient uptake of NO3 -N from soil by well developed fine-root systems, and translocation to canopy foliage. This study suggests that productivity and water purification can be achieved through a hardwood mixture in conifer plantations.


Assuntos
Solo , Traqueófitas , Ecossistema , Nitrogênio/análise , Raízes de Plantas/química , Água
5.
J Hazard Mater ; 411: 125100, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33486228

RESUMO

A novel dissimilatory antimonate [Sb(V)]-reducing bacterium, strain SVR, was isolated from soil of a former antimony (Sb) mine. Strain SVR coupled Sb(V) reduction to acetate oxidation with an apparent reduction rate of 2.4 mM d-1. The reduction of Sb(V) was followed by the precipitation and accumulation of white microcrystals in the liquid medium. The precipitates were initially small and amorphous, but they eventually developed to the crystal phase with a length > 50 µm. Strain SVR removed 96% of dissolved Sb as the precipitates. An X-ray diffraction analysis indicated that the microcrystals were the orthorhombic Sb trioxide (Sb2O3), i.e., valentinite. Phylogenetic and physiological analyses revealed that strain SVR is a member of the genus Geobacter. The cell suspension of strain SVR incubated with acetate and Sb(V) at pH 7.0 was able to form valentinite. Interestingly, at pH 8.0, the cell suspension formed another crystalline Sb2O3 with a cubic structure, i.e., senarmontite. Our findings provide direct evidence that Geobacter spp. are involved in Sb(V) reduction in nature. Considering its superior capacity for Sb removal, strain SVR could be used for the recovery of Sb and the individual productions of valentinite and senarmontite from Sb-contaminated wastewater.


Assuntos
Antimônio , Geobacter , Bactérias , Oxirredução , Filogenia
6.
Sci Total Environ ; 755(Pt 2): 142478, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045609

RESUMO

Japanese cedar (Cryptomeria japonica) is the main timber species in Japan. The prediction of the temporal changes in the 137Cs concentration in the stemwood of Japanese cedar after the Fukushima nuclear accident is essential for optimizing forest management in contaminated areas. However, it is difficult to estimate the respective contributions of root and foliar uptake to 137Cs accumulation in stemwood from simple field measurements, especially in trees that contain the residue of initially-deposited 137Cs. In this study, we devised a method for estimating the rate of 137Cs root uptake into stemwood using the 133Cs content in stemwood and the 137Cs/133Cs ratio in the exchangeable fraction of soil. As a trial, the method was applied to a cedar stand in Fukushima Prefecture, using available monitoring data from prior studies over 5 years from August 2011 to August 2016. The mean annual rate of 137Cs root uptake into stemwood over this period was estimated as 53 ± 20 Bq m-2 yr-1. We note that our method likely provided a maximum estimate, because it is based on the assumptions that 133Cs in wood is exclusively supplied by root uptake, and that Cs isotopes are taken up by roots in the top 5 cm of mineral soil. Moreover, the mean annual increase of the 137Cs inventory in stemwood during the study period was measured as 108 Bq m-2 yr-1, although this value was associated with considerable uncertainty (95% confidence interval from -109 to 324 Bq m-2 yr-1). As a result, the maximum estimated rate of 137Cs root uptake into stemwood accounted for around half of the measured rate of 137Cs accumulation in stemwood. Our results show that the Cs isotopic approach has potential to distinguish the main pathway of stemwood contamination (i.e., root vs. foliar uptake) following radioactive fallout.


Assuntos
Cryptomeria , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Radioisótopos de Césio/análise , Florestas , Japão , Poluentes Radioativos do Solo/análise
7.
Sci Total Environ ; 659: 783-789, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096408

RESUMO

This study investigated the transport of 137Cs within a forest ecosystem by examining temporal changes in the inventory and determining the major pathways of transfer following significant atmospheric deposition. A forested area of eastern Japan was monitored for four years immediately after the Fukushima nuclear power plant accident in March 2011 that released a large amount of radionuclides. The long physical half-life of 137Cs means that contamination can persist for decades, so it is vital to understand the mechanisms underlying the 137Cs dynamics in ecosystems. We sampled litterfall, throughfall, and soil, mainly from a cedar stand, over a four-year period, and analyzed the 137Cs concentrations of each sample to determine the transfer rate and total inventory. After validating our methodology through a comparison with results from an earlier study, we determined the temporal changes in the 137Cs distribution and in the major transfer pathway. Results showed that most 137Cs intercepted by canopies was transferred rapidly over the first nine months, and that the major pathway was not litterfall but throughfall. The ecological half-life of the 137Cs stocked in the canopy was calculated for both the early and later stages of contamination. Although the former is consistent with previous results, the latter ecological half-life is somewhat longer, probably because of dependence on the meteorological and tree physiological conditions at the site. This study presents valuable new data on the post-Fukushima 137Cs contamination, enhancing our understanding of the associated dynamics in forest ecosystems.


Assuntos
Radioisótopos de Césio/análise , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Árvores/química , Florestas , Acidente Nuclear de Fukushima , Japão , Folhas de Planta/química
8.
ChemSusChem ; 12(8): 1640-1645, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30803158

RESUMO

Heterogeneous multiple-catalyst assemblies were developed in which the flavinium cation and Na or Li cations were easily immobilized on a chitin-derived anionic polymeric scaffold through noncovalent ionic interactions. The supramolecular flavinium catalysts were successfully employed in the environmentally friendly heterogeneous Baeyer-Villiger oxidation and sulfoxidation by H2 O2 . Owing to the cooperative catalytic effect of flavinium, alkali metal, and sulfated chitin, the supramolecular flavinium assembly showed higher catalytic activity for the Baeyer-Villiger oxidation of cyclic ketones than the corresponding homogeneous flavinium catalyst. Because the ionic assembly was stable under the reaction conditions, the catalyst could be readily recovered by simple filtration and reused.

9.
PLoS One ; 14(2): e0212348, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763401

RESUMO

Changes in 137Cs export over time following clearcutting were investigated in a Japanese forested catchment affected by the Fukushima nuclear accident. A total of 13% of the catchment area was clear-cut 2 years after the accident. Annual suspended solids (SS) export at the catchment outlet increased 1.4 to 2.0 times after clearcutting; however, 137Cs export increased slightly (up to 1.1 times), corresponding to 0.21% to 0.30% of the 137Cs inventory in the catchment. The smaller change in 137Cs export than in SS export was due to a rapid decrease in the activity concentration following clearcutting. This decrease was likely caused by both natural attenuation and SS derived from sources with a low activity concentration in the clear-cut area. Monitoring of the sediment transport from hillslopes in small-scale experimental plots showed that the 137Cs yield in the skid trail was 3.6 to 21 times greater than those in clear-cut and unlogged forest floors. This significant 137Cs transport was due to greater soil erosion (by up to two orders of magnitude) along the skid trail, despite the lower activity concentration than those in the other plots. This indicates that while skid trails were involved in the rapid decrease of the activity concentration of SS, they were a potential source of the increased export of 137Cs and SS. Net 137Cs export increased by clearcutting (the export excluding the decrease accompanied by natural attenuation) was estimated to account for only 0.092% of the inventory in the catchment for 2.5 years. These results imply that the impact of clearcutting on 137Cs export was temporary in this catchment.


Assuntos
Radioisótopos de Césio/análise , Poluentes Radioativos do Solo/análise , Florestas , Acidente Nuclear de Fukushima , Sedimentos Geológicos/análise , Japão , Monitoramento de Radiação/métodos
10.
Anal Sci ; 35(2): 153-158, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30249930

RESUMO

To evaluate the mobility and bioavailability of 137Cs in soils, we compared the extraction of 137Cs with stable Cs and ammonium solutions from 137Cs-contaminated minerals and soils. The extraction yields of 137Cs with stable Cs were significantly lower than those with ammonium for minerals with frayed edge sites, but such differences were not observed for minerals without frayed edge sites. The amount of 137Cs extracted with stable Cs from soils was lower than, or equal to, that extracted with ammonium. The above results suggest that stable Cs extracted the 137Cs from easily accessible sites. Plant available 137Cs was assessed using Kochia (Bassia scoparia) cultivated in pots of contaminated soils, and compared with soil parameters including extractable 137Cs and K, and radiocesium intercept potential. The 137Cs/K ratio extracted with stable Cs solution was found to be a potential index for evaluation of the easily mobile and bioavailable fraction of 137Cs in soil.


Assuntos
Radioisótopos de Césio/análise , Radioisótopos de Césio/isolamento & purificação , Césio/química , Fracionamento Químico/métodos , Cloretos/química , Nitratos/química , Solo/química , Indicadores e Reagentes/química , Minerais/química
11.
Sci Total Environ ; 636: 539-546, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29715658

RESUMO

High concentrations of nitrate have been detected in streams flowing from nitrogen-saturated forests; however, the spatial variations of nitrate leaching within those forests and its causes remain poorly explored. The aim of this study is to evaluate the influences of catchment topography and coniferous coverage on stream nitrate concentrations in a nitrogen-saturated forest. We measured nitrate concentrations in the baseflow of headwater streams at 40 montane forest catchments on Mount Tsukuba in central Japan, at three-month intervals for 1 year, and investigated their relationship with catchment topography and with coniferous coverage. Although stream nitrate concentrations varied from 0.5 to 3.0 mgN L-1, those in 31 catchments consistently exceeded 1 mgN L-1, indicating that this forest had experienced nitrogen saturation. A classification and regression tree analysis with multiple environmental factors showed that the mean slope gradient and coniferous coverage were the best and second best, respectively, at explaining inter-catchment variance of stream nitrate concentrations. This analysis suggested that the catchments with steep topography and high coniferous coverage tend to have high nitrate concentrations. Moreover, in the three-year observation period for five adjacent catchments, the two catchments with relatively higher coniferous coverage consistently had higher stream nitrate concentrations. Thus, the spatial variations in stream nitrate concentrations were primarily regulated by catchment steepness and, to a lesser extent, coniferous coverage in this nitrogen-saturated forest. Our results suggest that a decrease in coniferous coverage could potentially contribute to a reduction in nitrate leaching from this nitrogen-saturated forest, and consequently reduce the risk of nitrogen overload for the downstream ecosystems. This information will allow land managers and researchers to develop improved management plans for this and similar forests in Japan and elsewhere.

12.
J Hazard Mater ; 342: 571-578, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28888188

RESUMO

Microbially mediated arsenate (As(V)) and Fe(III) reduction play important roles in arsenic (As) cycling in nature. Extracellular electron shuttles can impact microbial Fe(III) reduction, yet little is known about their effects on microbial As mobilization in soils. In this study, microcosm experiments consisting of an As-contaminated soil and microbial communities obtained from several pristine soils were conducted, and the effects of electron shuttles on As mobilization were determined. Anthraquinone-2,6-disulfonate (AQDS) and riboflavin (RF) were chosen as common exogenous and biogenic electron shuttles, respectively, and both compounds significantly enhanced reductive dissolution of As and Fe. Accumulation of Fe(II)-bearing minerals was also observed, which may lead to re-immobilization of As after prolonged incubation. Interestingly, Firmicutes-related bacteria became predominant in all microcosms, but their compositions at the lower taxonomic level were different in each microcosm. Putative respiratory As(V) reductase gene (arrA) analysis revealed that bacteria closely related to a Clostridia group, especially those including the genera Desulfitobacterium and Desulfosporosinus, might play significant roles in As mobilization. These results indicate that the natural soil microbial community can use electron shuttles for enhanced mobilization of As; the use of this type of system is potentially advantageous for bioremediation of As-contaminated soils.


Assuntos
Antraquinonas/química , Arsênio/análise , Bactérias/química , Compostos Férricos/química , Compostos Férricos/metabolismo , Minerais/química , Arseniatos , Arsênio/química , Bactérias/metabolismo , Biodegradação Ambiental , Elétrons , Microbiologia do Solo
13.
Arch Environ Contam Toxicol ; 74(1): 154-169, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28791460

RESUMO

Despite the wide use of trace metals in various technologies, such as chemical industries and electronic equipment, insufficient information is available on their behavior in the environment. We investigated changes in chemical forms and vertical distribution during the migration processes of trace metals, whose usage is currently increasing rapidly, such as Ag, In, Sn, Sb, and Bi, in soil contaminated with the equivalent of 50-100 times the background concentrations of these metals using an indoor control type monolith lysimeter filled with Andosol during an 8-year monitoring period. The vertical distribution of the total elemental concentrations, the mobile fractions (exchangeable, carbonate-bound, and metal-organic complex-bound) in soils, and the total elemental concentrations in soil solutions were analyzed to study trace metal migration in soil. Except for In, most of the added metals were retained in the uppermost (0-2 cm) soil layer, even after 8 years. However, In markedly migrated downward and accumulated at a depth of approximately 15 cm after 8 years. Furthermore, 10.0 ± 2.9 µg L-1 of In was detected in soil solution at a depth of 17.5 cm. The mobility of In was probably caused by the acidity of the soil, because the pH of the soil between 0 and 15-cm depth was 5 and below, and soluble hydro-oxides, such as In(OH) 30 aq and In(OH) 2+ , might be produced at this pH. Consequently, the remarkable mobility of In occurred in Andosol, which strongly retains various trace metals. The proportions of the mobile fractions observed in this study indicated that the mobility of the five metals in Andosol occurred in the order In > Bi ≥ Sb ≥ Sn > Ag.


Assuntos
Metais/análise , Poluentes do Solo/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Metais/química , Solo/química , Poluentes do Solo/química
14.
Sci Rep ; 7(1): 7701, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794453

RESUMO

Ecosystems of suburban landscapes (i.e., forest, inland water ecosystem) are threatened by high nitrogen (N) loadings derived from urban air pollutants. Forest ecosystems under high chronic N loadings tend to leach more N via streams. In the northern suburbs of Tokyo, N deposition loading on terrestrial ecosystems has increased over the past 30 years. In this region, we investigated nitrate concentrations in 608 independent small forested catchment water samples from northeastern suburbs of Tokyo. The nitrate concentrations varied from 0.07 to 3.31 mg-N L-1 in this region. We evaluated the effects of N deposition and catchment properties (e.g., meteorological and topographic factors, vegetation and soil types) on nitrate concentrations. In the random forest model, simulated N deposition rates from an atmospheric chemistry transportation model explained most of the variance of nitrate concentration. To evaluate the effects of afforestation management in the catchment, we followed a model-based recursive partitioning method (MOB). MOB succeeded in data-driven identification of subgroups with varying sensitivities to N deposition rate by vegetation composition in the catchment. According to MOB, the catchment with dominant coniferous coverage that mostly consisted of plantation with old tree age tended to have strong sensitivity of nitrate concentrations to N deposition loading.

15.
Springerplus ; 5(1): 1596, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652169

RESUMO

To investigate the nitrification potential of phyllospheric microbes, we incubated throughfall samples collected under the canopies of Japanese cedar (Cryptomeria japonica) and analyzed the transformation of inorganic nitrogen in the samples. Nitrate concentration increased in the unfiltered throughfall after 4 weeks of incubation, but remained nearly constant in the filtered samples (pore size: 0.2 and 0.4 µm). In the unfiltered samples, δ(18)O and δ(15)N values of nitrate decreased during incubation. In addition, archaeal ammonia monooxygenase subunit A (amoA) genes, which participate in the oxidation of ammonia, were found in the throughfall samples, although betaproteobacterial amoA genes were not detected. The amoA genes recovered from the leaf surface of C. japonica were also from archaea. Conversely, nitrate production, decreased isotope ratios of nitrate, and the presence of amoA genes was not observed in rainfall samples collected from an open area. Thus, the microbial nitrification that occurred in the incubated throughfall is likely due to ammonia-oxidizing archaea that were washed off the tree canopy by precipitation.

16.
Sci Total Environ ; 502: 611-6, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25302448

RESUMO

Cryptomeria japonica trees in the area surrounding Fukushima, Japan, intercepted (137)Cs present in atmospheric deposits soon after the Fukushima nuclear accident in March 2011. To study the uptake and translocation of (137)Cs in C. japonica leaves, we analyzed activity concentrations of (137)Cs and the concentration ratios of (137)Cs to (133)Cs ((137)Cs/(133)Cs) in old and new leaves of C. japonica collected from a forest on Mount Tsukuba between 9 and 15 months after the accident. Both isotopes were also analyzed in throughfall, bulk precipitation and soil extracts. Water of atmospheric and soil origin were used as proxies for deciphering the absorption from leaf surfaces and root systems, respectively. Results indicate that 20-40% of foliar (137)Cs existed inside the leaf, while 60-80% adhered to the leaf surface. The (137)Cs/(133)Cs ratios inside leaves that had sprouted before the accident were considerably higher than that of the soil extract and lower than that of throughfall and bulk precipitation. Additionally, more than 80% of (137)Cs in throughfall and bulk precipitation was present in the dissolved form, which is available for foliar uptake, indicating that a portion of the (137)Cs inside old leaves was presumably absorbed from the leaf surface. New leaves that sprouted after the accident had similar (137)Cs/(133)Cs ratios to that of the old leaves, suggesting that internal (137)Cs was translocated from old to new leaves. For 17 species of woody plants other than C. japonica, new leaves that sprouted after the accident also contained (137)Cs, and their (137)Cs/(133)Cs ratios were equal to or higher than that of the soil extract. These results suggested that foliar uptake and further translocation of (137)Cs is an important vector of contamination in various tree species during or just after radioactive fallout.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Folhas de Planta/química , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Cedrus/química , Japão , Cinza Radioativa
17.
Environ Sci Technol ; 48(1): 350-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328206

RESUMO

In the present study, we investigated the effect of antibiotics on microbial arsenate (As(V)) reduction and arsenite (As(III)) oxidation in sediments collected from a small pond and eutrophic lake. The As(V)-reducing activities were less susceptible to chloramphenicol in aerobic conditions than in anaerobic conditions. Aerobic As(V) reduction proceeded in the presence of diverse types of antibiotics, suggesting that As-resistant bacteria are widely antibiotic resistant. In contrast, some antibiotics, e.g., chloramphenicol, strongly inhibited aerobic As(III) oxidation. In addition, bacterial As(III) oxidase genes were scarcely amplified and Proteobacteria -related 16S rRNA genes drastically decreased in chloramphenicol-amended cultures. Erythromycin and lincomycin, which successfully target many Gram-positive bacteria, scarcely affected As(III) oxidation, although they decreased the diversity of As(III) oxidase genes. These results indicate that the aerobic As(III) oxidizers in the sediment cultures are mainly composed of Proteobacteria and are more sensitive to certain types of antibiotics than the aerobic As(V) reducers. Our results suggest that antibiotic disturbance of environmental microbial communities may affect the biogeochemical cycle of As.


Assuntos
Antibacterianos/farmacologia , Arseniatos/metabolismo , Arsenitos/metabolismo , Cloranfenicol/farmacologia , Proteobactérias/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Arsênio/metabolismo , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Oxirredução , Oxirredutases/genética , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética
18.
Environ Sci Technol ; 47(5): 2314-22, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23391028

RESUMO

Chemical transport models played key roles in understanding the atmospheric behaviors and deposition patterns of radioactive materials emitted from the Fukushima Daiichi nuclear power plant after the nuclear accident that accompanied the great Tohoku earthquake and tsunami on 11 March 2011. However, model results could not be sufficiently evaluated because of limited observational data. We assess the model performance to simulate the deposition patterns of radiocesium ((137)Cs) by making use of airborne monitoring survey data for the first time. We conducted ten sensitivity simulations to evaluate the atmospheric model uncertainties associated with key model settings including emission data and wet deposition modules. We found that simulation using emissions estimated with a regional-scale (∼ 500 km) model better reproduced the observed (137)Cs deposition pattern in eastern Japan than simulation using emissions estimated with local-scale (∼ 50 km) or global-scale models. In addition, simulation using a process-based wet deposition module reproduced the observations well, whereas simulation using scavenging coefficients showed large uncertainties associated with empirical parameters. The best-available simulation reproduced the observed (137)Cs deposition rates in high-deposition areas (≥ 10 kBq m(-2)) within 1 order of magnitude and showed that deposition of radiocesium over land occurred predominantly during 15-16, 20-23, and 30-31 March 2011.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Modelos Teóricos , Monitoramento de Radiação , Simulação por Computador , Japão
19.
Environ Microbiol ; 14(9): 2511-25, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22759205

RESUMO

The free-living, cosmopolitan, freshwater betaproteobacterial bacterioplankton genus Polynucleobacter was detected in different years in 11 lakes of varying types and a river using the size-exclusion assay method (SEAM). Of the 350 strains isolated, 228 (65.1%) were affiliated with the Polynucleobacter subclusters PnecC (30.0%) and PnecD (35.1%). Significant positive correlations between fluorescence in situ hybridization and SEAM data were observed in the relative abundance of PnecC and PnecD bacteria to Polynucleobacter communities (PnecC + PnecD). Isolates were mainly PnecC bacteria in the samples with a high specific UV absorbance at 254 nm (SUVA(254) ), and a low total hydrolysable neutral carbohydrate and amino acid (THneutralCH + THAA) content of the dissolved organic matter (DOM) fraction, which is known to be correlated with a high humic content. In contrast, the PnecD bacteria were abundant in samples with high chlorophyll a and/or THneutralCH + THAA concentrations, indicative of primary productivity. With few exceptions, differences in the relative abundance of PnecC and PnecD in each sample, determined using a high-sensitivity cultivation-based approach, were due to DOM quality. These results suggest that the major DOM component in the field, which is allochthonously or autochthonously derived, is a key factor for ecological niche separation between PnecC and PnecD subclusters.


Assuntos
Burkholderiaceae/fisiologia , Água Doce/química , Água Doce/microbiologia , Microbiologia da Água , Clorofila/análise , Ecossistema , Hibridização in Situ Fluorescente
20.
Sci Total Environ ; 408(8): 1932-42, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20153018

RESUMO

Soil cores and rainwater were sampled under canopies of Cryptomeria japonica in four montane areas along an atmospheric depositional gradient in Kanto, Japan. Soil cores (30cm in depth) were divided into 2-cm or 4-cm segments for analysis. Vertical distributions of elemental enrichment ratios in soils were calculated as follows: (X/Al)(i)/(X/Al)(BG) (where the numerator and denominator are concentration ratios of element-X and Al in the i- and bottom segments of soil cores, respectively). The upper 14-cm soil layer showed higher levels of Cu, Zn, As, Sb, and Pb than the lower (14-30cm) soil layer. In the four areas, the average enrichment ratios in the upper 6-cm soil layer were as follows: Pb (4.93)>or=Sb (4.06)>or=As (3.04)>Zn (1.71)>or=Cu (1.56). Exogenous elements (kg/ha) accumulated in the upper 14-cm soil layer were as follows: Zn (26.0)>Pb (12.4)>Cu (4.48)>or=As (3.43)>or=Sb (0.49). These rank orders were consistent with those of elements in anthropogenic aerosols and polluted (roadside) air, respectively, indicating that air pollutants probably caused enrichment of these elements in the soil surface layer. Approximately half of the total concentrations of As, Sb, and Pb in the upper 14-cm soil layer were derived from exogenous (anthropogenic) sources. Sb showed the highest enrichment factor in anthropogenic aerosols, and shows similar deposition behavior to NO(3)(-), which is a typical acidic air pollutant. There was a strong correlation between Sb and NO(3)(-) concentrations in rainfall (e.g., in the throughfall under C. japonica: [NO(3)(-)]=21.1 [dissolved Sb], r=0.938, p<0.0001, n=182). Using this correlation, total (cumulative) inputs of NO(3)(-) were estimated from the accumulated amounts of exogenous Sb in soils, i.e., 16.7t/ha at Mt. Kinsyo (most polluted), 8.6t/ha at Mt. Tsukuba (moderately polluted), and 5.8t/ha at the Taga mountain system (least polluted). There are no visible ecological effects of these accumulated elements in the Kanto region at present. However, the concentrations of some elements are within a harmful range, according to the Ecological Soil Screening Levels determined by the U.S. Environmental Protection Agency.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Cryptomeria , Ecossistema , Metais Pesados/análise , Nitratos/análise , Poluentes do Solo/análise , Poluentes Atmosféricos/química , Altitude , Cidades , Cryptomeria/crescimento & desenvolvimento , Cryptomeria/metabolismo , Monitoramento Ambiental , Geografia , Concentração de Íons de Hidrogênio , Japão , Chuva/química , Medição de Risco , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...